Retarding Potential Analyzers

In the ionosphere, mount along ram velocity, measure species densities

- Ram speed (7.5km/s) is high or supersonic relative to ion thermal speed or motion
- Spacecraft charging is negative and small relative to motional energy
- I-V curve has steps at $qV_{\text{ret}} = \frac{1}{2}m(V_{sr}+V_r)^2 - q\psi_s$; where: ψ_s = sensor potential relative to plasma, V_{sr} = ram speed
- Homework #1 Show that the thermal width of the steps is $m V_{sr} V_{th}$, where V_{th} is the ion species thermal speed. Show that for sensor potential of $-0.8V$, the step functions are at 1.1V for H^+ and 6V for O^+.

- Ions can be further differentiated with mass spectrograph behind RPA
 - See: Chappell et al., The retarding ion mass spectrometer on DE-1, Space Sci. Instr. 4, 477, 1981

Heelis and Hanson, 1998

ESS 265 Low Energy Particle Instruments 1
RPA/Ion Drift Meters

Heelis and Hanson, 1998

- In the ionosphere, mounted along ram velocity, measure species velocity
 - G2 retards lower energy H⁺, but allows higher energy O⁺ through
 - Collimated beam comes through and falls asymmetrically on collectors
 - G6 suppresses electrons, G3-5 are grounded to remove distortions
 - Homework #2: Determine transverse velocity V_t as function of ram speed, W, D.

- Issues: V_t error can be significant when ram direction angle is large

- Further reading:

ESS 265 Low Energy Particle Instruments 2
Magnetic Spectrographs

For low energy particles (left):
- post-acceleration V_{pa} behind an RPA provides V, T and m/q
- Homework #3 Show that in LIMS: $m/q = (Brc)^2/(2V_{pa})$, where B is magnetic field, r_c magnet curvature

For higher energy particles (right):
- Broom magnet clears electrons
- High field bends high energy ions
- Ions that were not bent assumed neutrals (ENAs)

Further reading:
Electrostatic Analyzers

- Electrostatic deflection analyzes velocity distribution
 - Analyzer constant, $K = R_1 / \Delta$, where $\Delta = R_2 - R_1$; Outer shell is at 0 Volts, inner shell at potential V.
 - Electrostatic deflection at entrance aperture can measure incoming ions from different directions if spacecraft non-spinning
 - Homework #4 Show that the energy E of the particles of charge q, incident on the MCP is $E = -KqV/2$

- Further reading:
 - McFadden et al., The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., in press
Time of Flight

- Electrostatic deflection \(\Rightarrow \) energy per charge: \(E/Q \). Time of flight, \(\tau \), \(\Rightarrow \) energy per mass \(E/M \)
 - Post-acceleration \(U_{\text{ACC}} \) provides sufficient energy for optimal McP operation and timing electrons at foil
 - Electrons generated at carbon foil result in energy loss \(\alpha \)
 - Homework #5. Show \(M/Q = 2(E/Q + qU_{\text{ACC}})/(d/t)^2 \alpha \)

- Further reading: